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Abstract

Ly is one kind of important modules in representation stability. In the
article [5], all local cohomology of Lx module over k[zo, ..., Z»] are studied
if k is of characteristic 0. In this paper, local cohomology of special Ly
will be computed in an elementary way regardless of characteristic of k.

1 Background

The goal of this section is introducing the way of computing local cohomology
of graded modules over polynomial rings.

Theorem 1. [/, 17.3] Let M be a finitely generated Z-graded module over the

polynomial ring of finite variables and let F = M be the corresponding coherent

sheaf on X = PJ’. Let m = (zo,...xs)R, then:

(a): fori > 1, H(X,F(t) = [HIFY(M)], so that HF1 (M) = @ HY (X, F(t))
t

(b): there is a short exact sequence as follows

0— HY

m

(M) — M — @ H(X, F(t)) — H},(M) — 0

Proof. Let U = {U; = D4 (x;)} be an open affine covering of P]'. By general
facts of Cech cohomology, we have exact sequence as follows,

0= EPFU) > PFUNU) = = FUgnNULN---NUp) =0

i<j
It is not hard to find the following two complexes isomorphic

LT |

0 —— OM,, —— D Mmz7 My, .z, — 0
i i<j




the bottom complex is almost the same as the Koszul Complex, K*(zq, ..., T,; M):
one only has to drop the first term of the koszul complex, and shift the number
by one.

Moreover, if one takes the t-th graded piece of this complex one obtains the
Cech complex for F(t) with respect to the same open cover. Now there is an
obvious map of [My] into the global sections of M, and [M]; into the global sec-
tions of M ® Ox (t) for every t. We have already seen that @&; H*(X, F(t)) may
be identified with the cohomology of the complex K*(xq, ..., x,; M) truncated
at the beginning. This implies the isomorphism in (a) at once and also yields
an exact sequence:

0— H), (M) = M — @ H(X,F(t)) — H}, (M) - 0

O

From the above theorem, one way to compute local cohomology of L) is
considering its sheafified version, L) on projective space P;'. Then the only job
is computing the sheaf cohomology of EV)\ ® Ox(m) for any integer m.

By general facts in representation theory, we have

Ly = Sx(Qx/, ® Ox (1))

where S is Schur Functor. We also define Sy (F) for any sheaf Ox-module as
sheaf associate to the presheaf

U —— S\(F({))

On P!, all computations are easy. David Mumford solved this problem on
PZ. People still don’t know much for higher dimensional projective space when
characteristic of k is not 0. So, In this paper, I assume n > 3. I try to compute
local cohomology of Ly 1, .. 1). In order to do this, by Theorem 1, we simply
need to understand

yeeay

HY(X, \(Qx/k(1)) ® Ox(m)) = H'(X, \(Qx/r) © Ox(m +q))

2 sheaf cohomology of Ox(m)

Lemma 1 (1, II1.5.1). Let A be a Noetherian ring, and let X = P}, withn > 1,
then:

(a): H(X,0x(m)) =0 for0<i<n

(b): there is a perfect pairing of finitely generated free A module

H°(X,0x(m) x H"(X,0x(—-m —n—1) = H"(X,0x(-n—1)) = A



Proof. 1t is a well-known fact. O

Theorem 2. Take P}’ = Proj(k[zo, ..., z5]).
If m >0,

dimy,(H°(X, Ox (m))) = <n ., m>

n

other sheaf cohomology group vanish
If —m < m < —1, all sheaf cohomology group vanish
Ifm<—n-—1,

dimy(H"(X,0x (m)) = <_mn_ 1)

other sheaf cohomology group vanish

Proof. By Grothendieck Vanishing Theorem, H*(X,Ox(m)) = 0 for i > n. By
Part (a) of the above lemma, only H(X,Ox(m)) and H"(X,Ox(m)) might
not be zero. Since on projective space P}, it is obvious that the

HY(X,0x(m)) = [k[zo, ... Tn]]m
as vector space over k, then by the perfect pairing above, it is easy to get
dimp(H°(X,0x(m))) = dimp(H"(X,0x(—=m —n — 1)))

By discussion, it is easy to get result above. O

3 sheaf cohomology of Qx/, ® Ox(m)

Lemma 2 (1, I1.8.13). Let A be a ring, let Y = SpecA, and let X = P}. Then
there is an exact sequence of sheaves on X,

0= Qx/p — Ox (-1 = Ox =0

Proof. This short exact sequence is well known; it is called the Euler Sequence.
O

Theorem 3. Let Qx,;, ® Ox(m) be a sheaf on P = proj(k(zo, ..., x,]), then:
(a): If m > 1,

. m+n—1

dzmk(HO(X, Qx/k ® Ox(m))) = (m — 1)( I )

other sheaf cohomology group vanish
(b): If m =0,
dimk(Hl(X, QX/k X Ox(m))) =1



other sheaf cohomology group vanish
(c): If —=n+ 1 <m < —1, all sheaf cohomology group vanish
(d): If m < —n,

dimy,(H" (X, Qx/ © Ox (m))) = w <;”)

other sheaf cohomology group vanish

Proof. By the above lemma, there is a short exact sequence,
0— QX/k — Ox(—].)@nJrl —-0x —0

Since Ox(m) is a line bundle, then — ® Ox(m) is an exact functor. Thus,
we get an exact sequence as follows,

0= Qx/x ® Ox(m) = Ox(m — 1) = Ox(m) = 0

This short exact sequence induces a long exact sequence, and by Grothendieck
Vanishing Theorem, the long exact sequence has two parts

0 — H(X, Qx/r(m)) = @ HO(X, Ox (m—1)) » H(X,0x (m)) = H'(X, Qx/x(m)) = 0
n+1

0— H"(X,Qx/, ® Ox(m)) = H"(X,0x(m—1)*"*") = H"(X,0x(m)) = 0

Since we have the following diagram commutes,

@ H°(X,0x(m—1)) —— H°(X,0x(m))

T J

ﬁl[k[Xo,...,Xn]]mfl ——— [k[z0s -, Zn]lm

where the map 0 : @ [k[zo, ..., Zn]lm—1 — [k[T0, s Tn]]m sends (fo, ..., fn) —
n+1
xofo + -+ xnfn where f; is a homogeneous polynomial of degree m — 1.

when m > 1, the map 6 is surjective, then the first sheaf cohomology group
vanish. In addition, it is easy to get the n-th sheaf cohomology vanish. Also,

dimi(H°(X, Qx/1(m))) = (n+1)dimy,(H° (X, Ox (m—1)))—dim,(H° (X, Ox (m)))

When m = 0, by Theorem 2, we know that H°(X, Ox(—1) = 0, then all sheaf
cohomology of Qy /; vanishes except the first. We have

dimy,(H' (X, Qx/1)) = dimy(H°(X,0x)) = 1

when —n + 1 < m < —1, by Theorem 2, we have all sheaf cohomology of
Ox(m — 1) and Ox (m) vanish. Thus, all sheaf cohomology of Qx/, ® Ox(m)
vanish.



When m < —n, By theorem 2, we know all sheaf cohomology of Ox(m —1) and
Ox (m) vanish except the n-th sheaf cohomology group. We have

dimy,(H" (X, Qx/p(m) = (n+1)dimp(H" (X, Ox (m—1))—dimy(H" (X, Ox(m)))

Therefore, we have the result above O

4 sheaf cohomology of /\q(QX/k) ® Ox(m+q)

Before getting into the main theorem, I am going to exhibit how people use Borel-
Weil-Bott Theorem to compute sheaf cohomolgy of Sx(Qx/x(1)) ® Ox (m), when
characteristic of k is 0. This method can be found in [3].

Bott’s Algorithm. Let A = (\1,...,\,) be a partition of ¢ where \y > Ao >
o> Ap,and Ny >0 for 1 < i < n. et a = (a1, e, np1) = (M AL o An),
we try to make o weakly decreasing by the following moves: for 1 < i < n with
a; < a1, we can replace (q;, av1) by (e — 1, + 1), If this move doesn’t
do anything, then we say we are ”stuck”.

Theorem 4 (Borel-Weil-Bott’s Theorem). Let P]' = proj(k[zo, ..., z,]) where
char(k) = 0. Run Bott’s Algorithm for o= (m, A1, ..., An)
(a) During the process, if it ever get stuck, then for all i,

H'(Sx(Qx/x(1)) ® Ox(m)) =0
(b) If get a weakly decreasing sequence B after i moves, then,
H'(X, 8x(Qx/x(1)) ® Ox (m)) = Sp(k")
with other sheaf cohomology group vanish.

Proof. Tt is a special case of Borel-Weil-Bott’s theorem in chapter 5 of [3]. O

Remark 1. You might notice that if ¢ > n, and the partition of q can not
be put into n-tuples (for example (1,1, ...,1))as what Bott’s Algorithm requires.
However, if this case happens, Sx(Qx,x(1)) is zero sheaf. There is nothing to
worry.

Definition 1. Let T)i\’m = dimk(Hi(X,S)\(QX/k(l)) &® Ox(m))) Let B;’m
denote the dimension of vector space gotten by running Bott’s algorithm on
a = (m, A1, ..., \) regardless of characteristic of k. Thus, when char(k) = 0,
o™ = BY™.

Theorem 5. Let A = (1,1,...,1) be a partition of ¢ where ¢ < n,

T ) = Bih

for arbitrary field k.



Proof. Consider the Euler Sequence,
0— Qx/p — Ox(-1)®" = Ox -0
Since Qx5 and Ox(—1) are vector bundles, and Ox (1) is line bundle, then we
get an induced short exact sequence,
qg—1

0= A = A(Ox (1)) = A (Qxp) = 0

By tensoring with Ox (m + ¢q), we get a short exact sequence, as follows,

qg—1

0= AQx/i(1) ®0x(m) = @ Ox(m) = A (Qx/x(1)) ® Ox(m+1) =0

n+1

In article [2], ” A smooth projective variety X over a field is said to satisfy Bott
vanishing if

TX (A Qxp)©L) =0
for all ample line bundles £, all ¢ > 0, and all j > 0. Bott proved this when X

is projective space.”

When m + ¢ > 1. By the result from article [2], we know all except the 0-th
sheaf cohomology of A?(Q2x/x(1)) ® Ox(m) vanish. But from the induced long
exact sequence, we have,

m m n+1Y\ .
Tff;:(l,l, )+T0q 1+1(1 1,..1) — ( q >d2mk(H0(X7 Ox(m))

When m 4+ g < —1. We have the following exact sequences,

0— H(X, /\ Qx k(1) ® Ox(m+1)) » H'(X, /\Qx/k(l) ®Ox(m)) — 0

0+ H'™2(X, \ QD05 (m-+1)) — H" (X \ 2 (1) @ Ox () — 0

0 — H" 1(X,Q% ) (m+q)) — H'(X, 0%/, (m+4q)) - P H'(X,0x(m)) - H"(X, Q% (m+q)) —

X/k X/k

("2

Notice that H(X,Qx;, ® Ox(m+¢)) = 0for all 0 < i < n—1. To
simplify, denote m + ¢ = s, where s < —1. Assume that for all 1 <b < ¢q— 1,

0



Hi(X, N\ Qx/k ® Ox(s)) =0 for all 0 <4 < n — 1. By exact sequences above,

—1 \— 2, m+1 1,m 0,m+1 . . .
we have T{, " = Tlnq_l’er oo T = quT1+ . According to the induction

Hypothesis, it is true that when s < —1 H* (X, \" Qx/k @ Ox(s)) = 0 for all
beZ,andall0 <i<n-—1.

Therefore, the last exact sequence becomes a short exact sequence, and there
is a recurrence 17" + Tff;inlﬂ = (”;rl)dimk(H"((X, Ox(m))).

when m + ¢ = 0, what we should know is sheaf cohomology of A X/k-
However, it is a well-known fact that H* (X, \'Qx /) = k if i = ¢, and zero
otherwise.

O

- From the above computations, we have found recurrence formulas for all
Tf;z(1717.___1), which is independent of the characteristic of k. Thus, we have
proved that Borel-Weil-Bott’s theorem works for exterior power case. Next, let’s
compute the ezact dimension of H' (X, N (Qx/x) ® Ox(m+ q)).

Theorem 6. Let X = P}’ = proj(k[zo, ..., z,])

If m > 1, then dimy,(H(X, (A" Qx/x) ® Ox(m+q))) = dimi(Sim11,...,1) (k™))

,and other sheaf cohomology groups vanish.

If —n < m <0, then all sheaf cohomology groups vanish.

Ifm < —n—1, then dimy(H™(X, (\? Qx/1)®0x (m~+q))) = dimi(So,...0.1,...1,m+n)) (E")),
and other sheaf cohomology groups vanish.

Proof. Running Bott’s algorithm on (m,1,..,1,0,...,0), which is very easy. O

5 Conclusion

In this paper, I computed local cohomology of a special Ly-module over k[zg, ..., ]
n a surprisingly elementary way. I don’t know if it is in literature. However,

since all techniques used here is trivial, I think everyone wants to compute can

do the same thing. So, I will just think this paper as an expository article. Hope-

fully, it is useful for someone.

Finally, I want to express my appreciation to professor Andrew Snowden for his

generous help. Without his help, this paper will never be done.
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