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Abstract

Lλ is one kind of important modules in representation stability. In the
article [5], all local cohomology of Lλ module over k[x0, ..., xn] are studied
if k is of characteristic 0. In this paper, local cohomology of special Lλ
will be computed in an elementary way regardless of characteristic of k.

1 Background

The goal of this section is introducing the way of computing local cohomology
of graded modules over polynomial rings.

Theorem 1. [4, 17.3] Let M be a finitely generated Z-graded module over the

polynomial ring of finite variables and let F = M̃ be the corresponding coherent
sheaf on X = Pnk . Let m = (x0, ...xn)R, then:
(a): for i ≥ 1, Hi(X,F(t) ∼= [Hi+1

m (M)]t, so that Hi+1
m (M) ∼=

⊕
t
Hi(X,F(t))

(b): there is a short exact sequence as follows

0→ H0
m(M)→M →

⊕
t

H0(X,F(t))→ H1
m(M)→ 0

Proof. Let U = {Ui = D+(xi)} be an open affine covering of Pnk . By general
facts of Cech cohomology, we have exact sequence as follows,

0→
⊕
i

F(Ui)→
⊕
i<j

F(Ui ∩ Uj)→ · · · → F(U0 ∩ U1 ∩ · · · ∩ Un)→ 0

It is not hard to find the following two complexes isomorphic

0
⊕
i

F(Ui)
⊕
i<j

F(Ui ∩ Uj) . . . F(U0 ∩ · · · ∩ Un) 0

0
⊕
i

Mxi

⊕
i<j

Mxixj · · · Mx0...xn 0
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the bottom complex is almost the same as the Koszul Complex, K •(x0, ..., xn;M):
one only has to drop the first term of the koszul complex, and shift the number
by one.
Moreover, if one takes the t-th graded piece of this complex one obtains the
Cech complex for F(t) with respect to the same open cover. Now there is an

obvious map of [M0] into the global sections of M̃ , and [M ]t into the global sec-

tions of M̃ ⊗OX(t) for every t. We have already seen that ⊕tHi(X,F(t)) may
be identified with the cohomology of the complex K •(x0, ..., xn;M) truncated
at the beginning. This implies the isomorphism in (a) at once and also yields
an exact sequence:

0→ H0
m(M)→M →

⊕
t

H0(X,F(t))→ H1
m(M)→ 0

From the above theorem, one way to compute local cohomology of Lλ is
considering its sheafified version, L̃λ on projective space Pnk . Then the only job

is computing the sheaf cohomology of L̃λ ⊗OX(m) for any integer m.
By general facts in representation theory, we have

L̃λ = Sλ(ΩX/k ⊗OX(1))

where Sλ is Schur Functor. We also define Sλ(F) for any sheaf OX -module as
sheaf associate to the presheaf

U Sλ(F(U))

On P 1
k , all computations are easy. David Mumford solved this problem on

P 2
k . People still don’t know much for higher dimensional projective space when

characteristic of k is not 0. So, In this paper, I assume n ≥ 3. I try to compute
local cohomology of L(1,1,...,1). In order to do this, by Theorem 1, we simply
need to understand

Hi(X,

q∧
(ΩX/k(1))⊗OX(m)) = Hi(X,

q∧
(ΩX/k)⊗OX(m+ q))

.

2 sheaf cohomology of OX(m)

Lemma 1 (1, III.5.1). Let A be a Noetherian ring, and let X = PnA, with n ≥ 1,
then:
(a): Hi(X,OX(m)) = 0 for 0 < i < n
(b): there is a perfect pairing of finitely generated free A module

H0(X,OX(m)×Hn(X,OX(−m− n− 1)→ Hn(X,OX(−n− 1)) ∼= A
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Proof. It is a well-known fact.

Theorem 2. Take Pnk = Proj(k[x0, ..., xn]).
If m ≥ 0,

dimk(H0(X,OX(m))) =

(
n+m

n

)
other sheaf cohomology group vanish
If −n ≤ m ≤ −1, all sheaf cohomology group vanish
If m ≤ −n− 1,

dimk(Hn(X,OX(m)) =

(
−m− 1

n

)
other sheaf cohomology group vanish

Proof. By Grothendieck Vanishing Theorem, Hi(X,OX(m)) = 0 for i > n. By
Part (a) of the above lemma, only H0(X,OX(m)) and Hn(X,OX(m)) might
not be zero. Since on projective space Pnk , it is obvious that the

H0(X,OX(m)) ∼= [k[x0, ..., xn]]m

as vector space over k, then by the perfect pairing above, it is easy to get

dimk(H0(X,OX(m))) = dimk(Hn(X,OX(−m− n− 1)))

By discussion, it is easy to get result above.

3 sheaf cohomology of ΩX/k ⊗OX(m)

Lemma 2 (1, II.8.13). Let A be a ring, let Y = SpecA, and let X = PnA. Then
there is an exact sequence of sheaves on X,

0→ ΩX/k → OX(−1)⊕n+1 → OX → 0

Proof. This short exact sequence is well known; it is called the Euler Sequence.

Theorem 3. Let ΩX/k ⊗OX(m) be a sheaf on Pnk = proj(k[x0, ..., xn]), then:
(a): If m ≥ 1,

dimk(H0(X,ΩX/k ⊗OX(m))) = (m− 1)

(
m+ n− 1

n− 1

)
other sheaf cohomology group vanish
(b): If m = 0,

dimk(H1(X,ΩX/k ⊗OX(m))) = 1
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other sheaf cohomology group vanish
(c): If −n+ 1 ≤ m ≤ −1, all sheaf cohomology group vanish
(d): If m ≤ −n,

dimk(Hn(X,ΩX/k ⊗OX(m))) =
(m− 1)n

m

(
−m
n

)
other sheaf cohomology group vanish

Proof. By the above lemma, there is a short exact sequence,

0→ ΩX/k → OX(−1)⊕n+1 → OX → 0

Since OX(m) is a line bundle, then − ⊗ OX(m) is an exact functor. Thus,
we get an exact sequence as follows,

0→ ΩX/k ⊗OX(m)→ OX(m− 1)⊕n+1 → OX(m)→ 0

This short exact sequence induces a long exact sequence, and by Grothendieck
Vanishing Theorem, the long exact sequence has two parts

0→ H0(X,ΩX/k(m))→
⊕
n+1

H0(X,OX(m−1))→ H0(X,OX(m))→ H1(X,ΩX/k(m))→ 0

0→ Hn(X,ΩX/k⊗OX(m))→ Hn(X,OX(m− 1)⊕n+1)→ Hn(X,OX(m))→ 0

Since we have the following diagram commutes,⊕
n+1

H0(X,OX(m− 1)) H0(X,OX(m))

⊕
n+1

[k[X0, ..., Xn]]m−1 [k[x0, ..., xn]]m

where the map θ :
⊕
n+1

[k[x0, ..., xn]]m−1 → [k[x0, ..., xn]]m sends (f0, ..., fn) →

x0f0 + · · ·xnfn where fi is a homogeneous polynomial of degree m− 1.
when m ≥ 1, the map θ is surjective, then the first sheaf cohomology group
vanish. In addition, it is easy to get the n-th sheaf cohomology vanish. Also,

dimk(H0(X,ΩX/k(m))) = (n+1)dimk(H0(X,OX(m−1)))−dimk(H0(X,OX(m)))

When m = 0, by Theorem 2, we know that H0(X,OX(−1) = 0, then all sheaf
cohomology of ΩX/k vanishes except the first. We have

dimk(H1(X,ΩX/k)) = dimk(H0(X,OX)) = 1

when −n + 1 ≤ m ≤ −1, by Theorem 2, we have all sheaf cohomology of
OX(m − 1) and OX(m) vanish. Thus, all sheaf cohomology of ΩX/k ⊗ OX(m)
vanish.

4



When m ≤ −n, By theorem 2, we know all sheaf cohomology of OX(m−1) and
OX(m) vanish except the n-th sheaf cohomology group. We have

dimk(Hn(X,ΩX/k(m) = (n+1)dimk(Hn(X,OX(m−1))−dimk(Hn(X,OX(m)))

Therefore, we have the result above

4 sheaf cohomology of
∧q(ΩX/k)⊗OX(m + q)

Before getting into the main theorem, I am going to exhibit how people use Borel-
Weil-Bott Theorem to compute sheaf cohomolgy of Sλ(ΩX/k(1))⊗OX(m), when
characteristic of k is 0. This method can be found in [3].
Bott’s Algorithm. Let λ = (λ1, ..., λn) be a partition of q where λ1 ≥ λ2 ≥
· · · ≥ λn, and λi ≥ 0 for 1 ≤ i ≤ n. let α = (α1, ..., αn+1) = (m,λ1, ..., λn),
we try to make α weakly decreasing by the following moves: for 1 ≤ i ≤ n with
αi < αi+1, we can replace (αi, αi+1) by (αi+1 − 1, αi + 1). If this move doesn’t
do anything, then we say we are ”stuck”.

Theorem 4 (Borel-Weil-Bott’s Theorem). Let Pnk = proj(k[x0, ..., xn]) where
char(k) = 0. Run Bott’s Algorithm for α = (m,λ1, ..., λn)
(a) During the process, if it ever get stuck, then for all i,

Hi(Sλ(ΩX/k(1))⊗OX(m)) = 0

(b) If get a weakly decreasing sequence β after i moves, then,

Hi(X,Sλ(ΩX/k(1))⊗OX(m)) = Sβ(kn)

with other sheaf cohomology group vanish.

Proof. It is a special case of Borel-Weil-Bott’s theorem in chapter 5 of [3].

Remark 1. You might notice that if q > n, and the partition of q can not
be put into n-tuples (for example (1, 1, ..., 1))as what Bott’s Algorithm requires.
However, if this case happens, Sλ(ΩX/k(1)) is zero sheaf. There is nothing to
worry.

Definition 1. Let T i,mλ = dimk(Hi(X,Sλ(ΩX/k(1)) ⊗ OX(m))). Let Bi,mλ
denote the dimension of vector space gotten by running Bott’s algorithm on
α = (m,λ1, ..., λn) regardless of characteristic of k. Thus, when char(k) = 0,
T i,mλ = Bi,mλ .

Theorem 5. Let λ = (1, 1, ..., 1) be a partition of q where q ≤ n,

T i,m(1,1,...,1) = Bi,m(1,1,...,1)

for arbitrary field k.
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Proof. Consider the Euler Sequence,

0→ ΩX/k → OX(−1)⊕n+1 → OX → 0

Since ΩX/k and OX(−1) are vector bundles, and OX(1) is line bundle, then we
get an induced short exact sequence,

0→
q∧

ΩX/k →
q∧

((OX(−1)⊕n+1)→
q−1∧

(ΩX/k)→ 0

By tensoring with OX(m+ q), we get a short exact sequence, as follows,

0→
q∧

(ΩX/k(1))⊗OX(m)→
⊕

(n+1
q )

OX(m)→
q−1∧

(ΩX/K(1))⊗OX(m+ 1)→ 0

In article [2], ”A smooth projective variety X over a field is said to satisfy Bott
vanishing if

Hj(X, (

i∧
ΩX/k)⊗ L) = 0

for all ample line bundles L, all i ≥ 0, and all j > 0. Bott proved this when X
is projective space.”

When m+ q ≥ 1. By the result from article [2], we know all except the 0-th
sheaf cohomology of

∧q
(ΩX/k(1))⊗OX(m) vanish. But from the induced long

exact sequence, we have,

T 0,m
1q=(1,1,...,1) + T 0,m+1

1q−1=(1,1,...,1) =

(
n+ 1

q

)
dimk(H0(X,OX(m))

When m+ q ≤ −1. We have the following exact sequences,

0→ H0(X,

q−1∧
ΩX/k(1)⊗OX(m+ 1))→ H1(X,

q∧
ΩX/k(1)⊗OX(m))→ 0

· · ·

0→ Hn−2(X,

q−1∧
ΩX/k(1)⊗OX(m+1))→ Hn−1(X,

q∧
ΩX/k(1)⊗OX(m))→ 0

0→ Hn−1(X,Ωq−1
X/k(m+q))→ Hn(X,ΩqX/k(m+q))→

⊕
(n+1

q )

Hn(X,OX(m))→ Hn(X,Ωq−1
X/k(m+q))→ 0

Notice that Hi(X,ΩX/k ⊗ OX(m + q)) = 0 for all 0 ≤ i ≤ n − 1. To
simplify, denote m + q = s, where s ≤ −1. Assume that for all 1 ≤ b ≤ q − 1,

6



Hi(X,
∧b

ΩX/k ⊗ OX(s)) = 0 for all 0 ≤ i ≤ n− 1. By exact sequences above,

we have Tn−1,m
1q = Tn−2,m+1

1q−1 , . . . , T 1,m
1q = T 0,m+1

1q−1 . According to the induction

Hypothesis, it is true that when s ≤ −1 Hi(X,
∧b

ΩX/k ⊗ OX(s)) = 0 for all
b ∈ Z, and all 0 ≤ i ≤ n− 1.

Therefore, the last exact sequence becomes a short exact sequence, and there
is a recurrence Tn,m1q + Tn,m+1

1q−1 =
(
n+1
q

)
dimk(Hn((X,OX(m))).

when m + q = 0, what we should know is sheaf cohomology of
∧q

ΩX/k.
However, it is a well-known fact that Hi(X,

∧q
ΩX/k) = k if i = q, and zero

otherwise.

From the above computations, we have found recurrence formulas for all
T i,m1q=(1,1,...,1), which is independent of the characteristic of k. Thus, we have

proved that Borel-Weil-Bott’s theorem works for exterior power case. Next, let’s
compute the exact dimension of Hi(X,

∧q
(ΩX/k)⊗OX(m+ q)).

Theorem 6. Let X = Pnk = proj(k[x0, ..., xn])
If m ≥ 1, then dimk(H0(X, (

∧q
ΩX/k)⊗OX(m+ q))) = dimk(S(m,1,1,...,1)(k

n))
,and other sheaf cohomology groups vanish.
If −n ≤ m ≤ 0, then all sheaf cohomology groups vanish.
If m ≤ −n−1, then dimk(Hn(X, (

∧q
ΩX/k)⊗OX(m+q))) = dimk(S(0,...,0,1,..,1,m+n))(k

n)),
and other sheaf cohomology groups vanish.

Proof. Running Bott’s algorithm on (m, 1, .., 1, 0, ..., 0), which is very easy.

5 Conclusion

In this paper, I computed local cohomology of a special Lλ-module over k[x0, ..., xn]
in a surprisingly elementary way. I don’t know if it is in literature. However,
since all techniques used here is trivial, I think everyone wants to compute can
do the same thing. So, I will just think this paper as an expository article. Hope-
fully, it is useful for someone.
Finally, I want to express my appreciation to professor Andrew Snowden for his
generous help. Without his help, this paper will never be done.
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