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Volatility Estimation

St is one asset’s price at time t, which satisfies the following dynamics

Xt = log St
dXt = µtdt+ σtdWt

The quantity to estimate is ∫ T

0
σ2
t dt
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Volatility Estimation

Assume there are n observations of log prices every∆t = T
n time, denote as {Xti}ni=0,

lim
n→∞

∑
ti

(Xti+1 − Xti)
2 p−→

∫ T

0
σ2
t dt

The real world doesn’t work in this way, otherwise, life is too easy.
What we observe is the ”true” log prices + noises

Yti = Xti + ϵti
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Realized Volatility vs Sampling Interval
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Realized Volatility vs Sampling Interval
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Quadratic Estimator

This is under the assumption that for each observation, the noises {ϵti}ni=0 are iid.
Define the quadratic estimator as ⟨Y, Y⟩(all)T =

∑
ti
(Yti+1 − Yti)

2

bias of quadratic estimator

1√
n

(
⟨Y, Y⟩(all)T − 2nE[ϵ2]

)
L−→ 2

√
(E[ϵ4])N (0, 1)

Quadratic Estimator is not ideal !!!
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Sparse Estimator

Denote the sparse estimator as ⟨Y, Y⟩(sp)T , and n(sp) is the number of observations
taken, n(sp) ≪ n

bias of sparse estimator

⟨Y, Y⟩(sp)T
L
≈
∫ T

0
σ2
t dt+ 2n(sp)E[ϵ

2] +
[
4n(sp)E[ϵ

4] +
2T
n(sp)

∫ T

0
σ4
t dt
]1/2

N (0, 1)
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Average Estimator

K sparse estimators, and n̄ is the average number of observations. Averaging K
sparse estimators gives an average estimator ⟨Y, Y⟩(avg)t

bias of average estimator

⟨Y, Y⟩(avg)T
L
≈
∫ T

0
σ2
t dt+ 2n̄E[ϵ2] +

[
4
n̄
K
E[ϵ4] +

4T
3n̄

∫ T

0
σ4
t dt
]1/2

N (0, 1)

Still Biased, So annoying
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Two Scales Estimator

the legendary two scales realized volatility estimator (TSRV)

⟨̂X, X⟩T = ⟨Y, Y⟩(avg)T − n̄
n
⟨Y, Y⟩(all)T
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Implications of independent noises

How to check if the microstructure noises are independent or not? The following
equation will give one criterion

E[(Ytj − Ytj−1)(Yti − Yti−1)] =


∫ ti
ti−1

σ2
t dt+ 2E[ϵ2] if j = i

−E[ϵ2] if j = i+ 1

0 if j > i+ 1
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Autocorrelogram
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Autocorrelogram
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Dependent Noises

Assumption:
noise process ϵt is independent of Xt, stationary, and strong mixing with the mixing
coefficients decaying exponentially. Together with some κ > 0, E[ϵ4+κ] < ∞

No one cares!

Assumption’s Implication

There is a constant ρ < 1 so that for all i,

|Cov(ϵti , ϵti+l)| ≤ ρlVar(ϵ)
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TSRV

Define lag sparse estimator as

⟨Y, Y⟩(J, r)T =
∑

0≤j(i−1)≤n−r−j

(Ytji+r − Ytj(i−1)+r)
2

Define average lag sparse estimator as

⟨Y, Y⟩(J)T =
1

J

J−1∑
r=0

⟨Y, Y⟩(J, r)T

=
1

J

n−J∑
i=0

(Yti+J − Yti)
2
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TSRV

Define a generalized version of TSRV

⟨̂X, X⟩
(tsrv)

T = ⟨Y, Y⟩(K)T − n̄K
n̄J

⟨Y, Y⟩(J)T

where n̄K = n−K+1
K , and n̄J = n−J+1

J

very important lemma

Under the noise dependence assumption, and n → ∞∑n−J
i=0 (Xti+J − Xti)(ϵti+J − ϵti) = O(

√
J)

which results in the following decomposition

⟨Y, Y⟩(J)T = ⟨X, X⟩(J)T + ⟨ϵ, ϵ⟩(J)T +O( 1√
J
)
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Decomposition of TSRV estimator

TSRV decomposition

According to the above lemma, for 1 ≤ J ≤ K, and K = o(n)

⟨̂X, X⟩
(tsrv)

T =
[
⟨X, X⟩(K)T − n̄K

n̄J
⟨X, X⟩(J)T

]
+
[
⟨ϵ, ϵ⟩(K)T − n̄K

n̄J
⟨ϵ, ϵ⟩(J)T

]
+O(

1√
K
)

The first term is the signal term, and the second term is the noise term
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Decomposing the Error Term

Consider the noise term: [
⟨ϵ, ϵ⟩(K)T − n̄K

n̄J
⟨ϵ, ϵ⟩(J)T

]
Under the iid noise, this is equal to zero and the estimator

⟨̂X, X⟩
(tsrv)

T = ⟨Y, Y⟩(K)T − n̄K
n̄J

⟨Y, Y⟩(J)T

is consistent. What about the more general case?

UT Austin High Frequency Volatility Estimation 18/31



Limiting Distribution of Noise Term

Assumption 1

Sequences {Jn}∞n=1, {Kn}
∞
n=1 satisfy lim supn→∞

Jn
Kn

< 1. This is not a restrictive
assumption, and is satisfied when 1 ≤ J < K, K = o(n).

Proposition 1

Under Assumption 1,

K
n1/2

(noise− E[noise]) L−→ ξZ

With E |noise| bounded above by a o
(n
K (ρ

K + ρJ)
)
term. Explicit expression for ξ given

in the paper
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Limiting Distribution of Signal Term

Proposition 2

Assuming 1 ≤ J ≤ K and K = o(n),(
K
n

(
1 + 2

J3

K3

))−1/2(
⟨X, X⟩(K)T − n̄K

n̄J
⟨X, X⟩(J)T − ⟨X, X⟩T

)
L−→ η

√
TZ

Where η has a limiting distribution independent of Z that is given in another paper of
theirs.

Notice how convergence rate changes with J fixed vs J → ∞. Pay a price for
accounting for too much serial dependence.
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The Estimator

To account for this additional bias from serial dependence, the authors will suggest
adjusting the original TSRV estimator in one of two ways.

First, an adjustment to the TSRV estimator that was a SSC in the original paper but
here provides consistency under dependence:

⟨̂X, X⟩
(tsrv,adj)

T =

(
1− n̄K

n̄J

)−1

⟨̂X, X⟩
(tsrv)

T
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The Estimator

To account for this additional bias from serial dependence, the authors will suggest
adjusting the original TSRV estimator in one of two ways.

First, an adjustment to the TSRV estimator that was a SSC in the original paper but
here provides consistency under dependence:

⟨̂X, X⟩
(tsrv,adj)

T =

(
1− n̄K

n̄J

)−1

⟨̂X, X⟩
(tsrv)

T

They suggest that optimal choice is K = O(n2/3) and to pick J such that
Cov(ϵt0 , ϵtJ) = o(n−1/2). In this case,

⟨̂X, X⟩
(tsrv,adj)

T = ⟨X, X⟩T +

(
2Eϵ2

n
K
Cov(ϵt0 , ϵtJ) +

n1/2

K
ξZ1 +

(
K
n

)1/2

η
√
TZ2

)
(1 + op(1))
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Adjusting for Bias

When K is large, this may be a slight underestimate. The second adjustment is an
“area-adjusted” bias correction:

⟨̂X, X⟩
(tsrv,aa)

T =
n

(K− J)n̄K
⟨̂X, X⟩

(tsrv)

T

Proposition 4: these two estimators have the same asymptotic behavior
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Which to Prefer?

Authors recommend the second,

especially formoderate sample size. It should be emphasized, however, that
the bias-calculation is based on an assumption of a constant σ and on bor-
rowing information from the middle of the interval [0, T].
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The More the Merrier, Right?

Consider a weighted sum of estimators at K1, K2, . . . , KM different time scales:

⟨̂X, X⟩
(msrv)

T =

M∑
i=1

ai⟨Y, Y⟩KiT + 2Êϵ2

Previous work showed this converged in the iid case at n−1/4 under suitable
assumptions on ai.
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Another Decomposition

We can write the MSRV estimator in the dependent case as

⟨̂X, X⟩
(msrv)

T =

M∑
i=1

ai⟨X, X⟩(Ki)T︸ ︷︷ ︸
signal

+

M∑
i=1

aiUn,Ki︸ ︷︷ ︸
noise

+2×
M∑
i=1

ai⟨X, ϵ⟩(Ki)T︸ ︷︷ ︸
signal-noise interaction

+

M∑
i=1

aiEn,Ki + 2Eϵ2︸ ︷︷ ︸
end points of noise

+Op(n−1/2)

where

Un,Ki = − 2

Ki

n∑
j=Ki

ϵtjϵtj−Ki , En,Ki = − 1

Ki

Ki−1∑
j=0

ϵ2tj −
1

Ki

n∑
j=n−Ki+1

ϵ2tj

UT Austin High Frequency Volatility Estimation 25/31



Now, Some Sensible Weights

Consider a class of weights

ai =
i
M2

h
(

i
M

)
− 1

2M2

(
i
M

)
h′
(

i
M

)
Where h ∈ C1 and ∫ 1

0
xh(x)dx = 1,

∫ 1

0
h(x)dx. = 0

Within this class of weights, the signal term is asymptotically unbiased.
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Adding Dependence to MSRV

The only extra bias to account for due to dependence is
∑M

i=1 aiUn,Ki . Authors show
that with our class of weights, we an bound it such that

∣∣∣∣∣E
[

M∑
i=1

aiUn,Ki

]∣∣∣∣∣ ≤ O(M−1)

Hence, they claim that if the rest of the estimator is op(M−1/2) = op(n−1/4), then this
bias doesn’t asymptotically matter. They calculate the limiting distribution of

⟨̂X, X⟩
(msrv)

T , it’s n−1/4-consistent with a very complicated variance.
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Reminder Why TSRV is Better than RV

Figure: It’s way more stable than RV
Figure: Robust to choice of J and K
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TSRV and MSRV are Similar

Authors suggest it is a trade off of computational complexity to go from n−1/6

convergence to n−1/4. Qualitatively, MSRV looks only slightly different:
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Thank You
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