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Abstract

Deep learning architectures are susceptible to adversar-
ial attacks, which are examples where a small input per-
turbation is added to the input leading the model to incor-
rectly classify. One interesting development in adverserial
defense for images is the use of Deep Image Prior(DIP)
to reconstruct the original image, a Convolutional Neural
Network used to enhance the an input image with no prior
training data other than the image itself. We extend this
work by replicating this network as well as using this ar-
chitecture on image classification models, such as Visual
Transformers. Implementation of our model can be seen at
https://github.com/dalmeraz/Classification-DIP-Defense.

1. Problem Statement
1.1. Motivation

Due to the increasing use of neural networks in countless
real life applications, adversarial attacks could pose a large
challenge in the deployment of real time deep learning sys-
tems. Therefore, the exploration of adversarial defense is
vital to increase the security of deep learning systems. In
this work we will focus on deep learning models centered
around image classification. We will be exploring the use
of the Deep Image Prior, which is a CNN which allows for
image enhancement. In this case, we will be using the Deep
Image Prior to reconstruct the original image after it has
been altered using an adversarial attack. Additionally, we
will be analysing its effects on a new wave of vision models
brought to us as Vision Transformers.
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1.2. High Level Overview

Our model makes crucial use of the DIP trace, which is
generated when executing the DIP model. As seen in Figure
1, a DIP trace includes many sub-images for which differ-
ent prediction labels can be created. Therefore, the task for
our defense model is using this DIP trace to recreate a clean
image that our model can predict correctly. We begin by ig-
noring the first several noisy sub-images in the trace. Then,
we filter out cross-boundary images, which are consecutive
pairs of image in the DIP trace that have different predicted
labels. We then use each pair of images to create a list of
on-boundary images. These images are obtained by linearly
interpolating the two images in the pair so it has a prediction
as close as possible to equal to both classes. We then create
on-manifold images by perturbing the on-boundary images
towards adversarial noise, and average them together to cre-
ate our final x,..

For example, after truncating our DIP trace changes la-
bel predictions 20 times, there will be 20 cross-boundary
images, 20 on-boundary images, 20-manifold images, and
1 final reconstructed image.

2. Related Work

Image reconstruction plays a vital role in adversarial de-
fense for image based deep learning architectures. Further-
more, many works utilize Deep Image Priors to reconstruct
the original image after it has been altered.

2.1. Deep Image Prior

Deep Image Prior is an iterative model developed for
enhancing images with no prior training data other than
the image itself. [11]. It can be used to fill in missing
gaps within images, increase image resolutions and remove
noise. It works by starting with a set of random values



Figure 1. Preliminary results showing an adversarial image, the original image, and then a DIP trace including the predictions that were
generated. The original label is ’cat’ and adversarial prediction was ’horse’. The DIP reconstruction starts with a random initialization of
weights. It then starts to construct images that are of the same label as the original image. However, by the end the DIP learns the small
perturbations present in the adversarial attack. Thus our approach focuses on the intermediate DIP iterations.

for each pixel in the unenhanced image. It then repeatedly
passes the image through a convolutional network and cal-
culates loss based off the input image. This in result gener-
alizes the input image.

2.2. DIP-Defense

DIP-Defense takes advantage of the denoising capabili-
ties of DIP to recreate images that could contain noise [1].
The defense model feeds input images through a DIP net-
work a number of times based off of a heuristic which in
theory denoises adverserial images. However, this work as-
sumes that the DIP network could not learn some of the
perturbations that were made to the original image.

2.3. Delving into Deep Image Prior for Adversarial
Defense

Delving into Deep Image Prior for Adversarial Defense
is an iterative improvement over DIP-defense in which the
heuristic used to know how many DIP recreations to create
is based off of finding decision boundaries in the classifica-
tion space of a model. The authors evaluate their work on
Resnet-18 over a set of image classification tasks. [2]. We
elaborate on this work by analyzing it for other models.

3. Technical approach

In order to generate adverserial attacks, our paper uses
torchattacks [0]. This library allows us to specify what kind
of attack we want to execute and given a victim model, gen-
erates adverserial attacks for it. Additionally, for our de-
fense model, we make use of the official DIP repository and
use their utils to generate out defense model [10]. Sample
results of adverserial attacks can be see in Figure 2

Once we have a victim model and an adversarial attack
we begin our implementation by creating a DIP trace. The
DIP trace is generated by doing forward passes to the DIP
model and at each iteration storing the DIP generated image
and the resulting label when that image is passed to the vic-
tim model. Figure 1 gives an example of a generated DIP
trace.

We assume all images from the dataset are distributed
on a high dimensional manifold. The victim model divides
the manifold into several areas so that all images in the
same area have the same label. DIP trace is a list of im-
ages distributed on the manifold. We denote DIP trace as
DIP = {I;;}*=N, and label(I}) be the class to which the
image [} has the highest possibility to be classified.

First, we construct a sub-list of DIP trace called cross-
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Figure 2. Adverserial Attack images generated by our model. The
victim model used was a simple, small CNN architecture trained
on CIFAR10 with adverserial images generated with projected
gradient decent.

Model No Attack | PGD | FGSM | BIM

VIT 0.93 0.09 0.52 0.49

VIT + Defense 0.50 0.51 0.53 0.41
VGG16 0.87 0.82 0.92 0.92
VGG16 + Defense 0.27 0.14 0.15 0.19

Table 1. This table contains the difference in accuracy on the
CIFAR-10 dataset. Here we alternate between the victim model
as well as defense and no defense. We observe that the ViT model
is more prone to gradient based PGD attack versus the ResNet
model, but is able to recover performance with the the defense.

boundary images in which each image in that sub-list has
different label than the next image in the DIP trace. There
are two more minor conditions that an image should meet
to be included in cross-boundary images. In summary, an
image [}, is included in the cross-boundary images if

1. ty < k where tg is hyper-parameter

2. SSIM (Ix, Iy) > T where Ij is the original image, SSIM
function computes the similarity between two images, and
T is hyper-parameter. We choose 7 = 0.4 in this paper.

3. label(1};) # label(1}11)

Secondly, we linearly interpolating each pair of cross-
boundary images to construct a list called on-boundary im-
ages. For I, in cross-boundary images, choosing ¢ €
{1,2,...,100} such that the difference between the proba-
bility of the constructed image ﬁ w Iy + 200~ Ty to

100
be classified as label(I;) and as label(/j1) is the smallest

among these 100 constructed images leads to the resuling
cross-boundary image.

Next, by perturbing each on-boundary image a little bit,
we can get manifold-images which would be classified cor-
rectly by the victim model, and very close to on-boundary
images as well. In detail, for each on-boundary image I, we
choose a hyper-parameter 3 that is very small, and construct
the manifold images, Irnanifora = I + % (I — Iy) where
Iy is the original image.

Finally, we average the generated manifold-images
{I;}, to get a reconstructed image by the following for-

mula
1

m
Ireconstruct = Ei:lli
m

We test the reconstructed image on our victim model to
see if it is classified correctly. This is done for all the images
on our dataset.

4. Optimizations

Due to the multiple models needing to keep track of in-
termediate DIP images one of the largest constraints en-
countered was memory. Initial implementations would con-
sume >32 GB of memory and so optimizations were needed
to be done. The most straight forward and impactful opti-
mization that we did was instead of keeping track of the
full DIP trace the model began to ignore DIP images were
the predicted label would not transition, as these were im-
ages that were not needed for the rest of the model to func-
tion. From here, additional memory management such as
using both GPU and CPU memories allowed us to achieve
a model were model executions could still be done on GPU.
There’s still additional improvements to be done here such
as generating the on-manifold images as the DIP-trace is
created however this is left as future work.

5. Results

The full system has multiple configurable components
and hyper-parameters that can be configured among each
component. The three main components we can control
are the DIP architecture used for our defense model, the
attack model used to generate adversarial attacks and vic-
tim model. For the DIP model, we use a skip net. For the
victim model, we use ViT architecture. As for dataset, our
testing uses the CIFAR-10 dataset.

We analyzed the impact of our adversarial defense over
the CIFAR-10 dataset. [7] We alternated between two vic-
tim models, a pretrained ViT (Visual Transformers) [3] and
a VGG-16 model [9] . We also alternated between 3 differ-
ent adversarial attack methodologies, PGD (Projected Gra-
dient Descent) [12], Fast Gradient Signed Method (FGSM)
[4], and Basic Iterative Method (BIM) [8] to see the affect
of different adversarial attacks on the the different victim



models as well as with our adversarial defense. We present
the results of this experiment in Table 1.

As can be seen, the most interesting results come when
comparing ViT vs Vit + Defense in No attack and PGD.
Here we see that although the ViT model has high accuracy
it is extremely sensitive to Adverserial Attacks and is fooled
by 91% of them. Meanwhile, our ViT-Defense model sees a
heavy hit when not receiving adverial attacks by achieving
50% accuracy but when given adverserial images, it gener-
ates an extremely similar accuracy. This similarity can also
be seen when looking across the whole row. Our interpre-
tation of this is that our model is fairly good at removing
adverserial noise however it might be introducing its own
type of DIP-based noise.

When looking at our comparison results for our CNN-
based model we see a fall in success of our model. The
attacks are generally less successful and less likely to be
successful through our model. This is correlated to each
other as our model’s beta hyper parameter pushes models
to predict away from the original label, thus if the original
label is right beta pushes our predictions slightly away from
this.

In addition to the results presented, our model was also
tested with an ImageNet pretrained ResNet50 [5] as a way
of analysing if the success of our ViT model was due to
the resizing done to fit the images or due to the pretrained
nature of the models. What we found for these tests were
extremely similar results to that of VGG16 and thus dis-
prove the two concerns as being large factors in the results
we achieve.

6. Conclusion

Our model’s strengths show in the scenarios in which
large amounts of adverserial attacks are expected to be en-
countered. Additionally, there are many hyper parameters
that could probably still be tuned and explored, some which
would directly affect the metrics that could be most crucial
when concerned about precision on adverserial attacks or
general accuracy.
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