
Bayesian Model of Stochastic Volatility

Zhou Fang Saiyang Zhang

April 14, 2023

Stochastic Volatility Model

Question: Given the daily price of the S&P 500 index, how do we predict the volatility of

the price based on the Stochastic Bayesian Model?

One of the earliest literature and perhaps the most influential in the Bayesian modeling

for stochastic volatility is [2] Lots of works in more complicated scenarios have been derived

since then, the followings are some of the influential ones, [4], [5], [3], [1].

Assume the underlying dynamics for one asset is

dSt = µStdt+
√
υtStdWt (1)

dυt = (θ − α log υt)υtdt+ ξυtdBt (2)

in the above, α > 0, θ > 0, υt = σ2
t is the variance at time t, St is the asset’s price. Wt and

Bt are two independent Brownian motions. The dynamic for St is assumed to be geometric

Brownian motion with drift, which is quite common for asset prices’ dynamics. The dynamic

for the variance is assumed to be mean-reverting, with certain shocks θ proportional to

the current variance. As one can see, if the current variance is too small, then the drift

term α log υt will be positive, which makes the variance, in expectation, increase. When

the variance is too large, the drift term will be negative, which will make the variance, in

1

expectation, decrease. This mean-reverting dynamic makes sense because, for one asset, the

variance can neither be too large nor 0.

Now, let ht = log υt, then by the Ito’s formula,

d log υt =
dυt
υt

− ⟨υ, υ⟩t
2υ2

t

(3)

= (θ − ξ2

2
− α log υt)dt+ ξdBt (4)

since ht = log υt, the above becomes

dht = (θ − ξ2

2
− αht)dt+ ξdBt (5)

= a1dt− αhtdt+ ξdBt (6)

where, a1 = θ− ξ2

2
. Now, set rt =

dSt

St
which is the return at time t. then, the dynamics after

taking log scales

rt = µdt+ e
ht
2 dWt (7)

dht = a1dt− αhtdt+ ξdBt (8)

if we discretize the above dynamics by setting dt = 1 unit of time, and a2 = 1− α then we

get the connecting functions

rt = µ+ e
ht
2 ϵt , ϵt ∼ N (0, 1) (9)

ht = a1 + a2ht−1 + ξηt , ηt ∼ N (0, 1) (10)

to conduct Bayesian inference. To find the distribution for rt, we rewrite Eq(9) as

rt ∼ N (µ, e
ht
2) (11)

First, we will need to set the priors for coefficients for µ, a1, a2, and ξ. We set the priors as

2

follows,

µ ∼ N (µ0, σ0) (12)

a1 ∼ N (µ1, σ1) (13)

a2 ∼ N (µ2, σ2) (14)

ξ2 ∼ Γ−1(α0, β0) (15)

We construct the script file as the following:

1: Read off the realized volatility data as realized vol and return data as return from the

file

2: Initialize the prior for µ, a1 and a2 for each run, as µ0 = µ1 = µ2 = 0 and σ0 = σ1 =

σ2 = 0.25, which is a realistic value for the stock market.

3: Initialize and tune the parameter for inverse gamma distribution for ξ, as α0 = 100 and

β0 = 1

4: Initialize the number of all data set as m and training set as n = 20 that used for

posterior prediction

5: Construct matrix that store the posterior prediction value for volatility and returns from

the training set

6: for i in 1:(m-n) {

7: Initialize the training set for return as the i to the (i+n)-th element, record it as r. Do

the same for logrithm of realized vol as h

8: Run the fitting algorithm and collect the sample output lists

9: From the model, take the mean of the sampled µ, a1, a2 and ξ

10: From the mean of the sampled data, predict the volatility by taking the exponential power

of ht and return using eq(10) and eq(9)

11: }

12: Sample and make the trace plot for µ, a1, a2 and ξ to check the convergence.

3

13: Sample and make the violin plot for µ, a1, a2 and ξ to check the confidence interval.

14: Compare realized volatility to the predicted volatility by ploting the distribution density

plot

15: compare realized return to the predicted return by ploting the distribution density plot

And here we write the algorithm for each run:

1: fix the indexing in the time series, and make sure we have r2 to rt as the return at the

end of each time interval, and h1 to ht−1 as the volatility at the start of each time interval

2: Build the Jags model:

3: for i in 1:n {

4: ri given by normal distribution with mean µ and variance eht, where ht is given by Eq(10)

5: Generate ηi at each time step in the Eq(10) from normal distribution with mean of 0 and

variance of 1

6: }

7: µ, a1 and a2 sampled from normal distribution with mean µ0, µ1 and µ2 and standard

deviation σ0, σ1 and σ2 ,respectively.

8: Sample ξ2 from the inverse gamma distribution with shape parameter α0 and β0

9: End

10: Run Jags model using the initialized value

11: Initialize number of MCMC trials

12: Update the burn-in period

Results Comparisons

When conducting the empirical studies, we set 1 unit time to be 30 mins. We study the

Bayesian inference on the realized volatility of the S&P 500 index. The recent 1 month’s

data with 2 mins resolution is retrieved from yahoo finance, and the realized volatility is

obtained from every 15 closed prices, which means the resolution for realized volatility is 30

4

mins.

After running the MCMC algorithm, we pick the last run for convergence check for four

of our variables µ, a1, a2 and ξ, as shown in Fig.4 and 2. The results sampled from MCMC

run show a nice convergence. And then, we make a violin plot of those variables to find the

confidential interval as shown in Fig.3.

0 2000 4000 6000 8000 10000

−
0.

00
2

Index

µ

0 2000 4000 6000 8000 10000

−
2

Index

a 1

Figure 1: Trace plot for two variables µ and a1 in the last run, which shows a nice convergence

After we check for convergence, we calculate the Return and Volatility using the sampled

value from the posterior distribution. We compare the density distribution of predicted

Return in green lines and Volatility with the real data as shown in blue lines. We find

that our prediction captures the Return data but missed the distribution of Volatility and

generating a much wider spread. However, we successfully predict the mean of volatility.

5

0 2000 4000 6000 8000 10000

0.
65

Index

a 2

0 2000 4000 6000 8000 10000

0.
09

Index

Χ

Figure 2: Trace plot for two variables a2 and ξ in the last run, which shows a nice convergence

−
2

−
1

0
1

a1 a2

−
0.

00
2

−
0.

00
1

0.
00

0
0.

00
1

0.
00

2

µ

0.
09

0.
10

0.
11

0.
12

ξ

Figure 3: Violin plot showing the confidential interval for all variables µ, a1, a2 and ξ in the
last run, which show a nice convergence

Author Contributions

• SZ wrote the solutions document and checked over ZF’s MCMC algorithm and R script.

6

−0.01 0.00 0.01 0.02 0.03

0
50

10
0

15
0

20
0

25
0

Density Plot of Returns

Return

D
en

si
ty

−0.020 −0.010 0.000 0.010

0
10

0
20

0
30

0
40

0
50

0

Density Plot of Volatility

Volatility

D
en

si
ty

Figure 4: Density function for predictions of the volatility and return from posterior distri-
bution (green), as compared to that for the volatility and return from real data (blue). In
this case, we set the number of training data to be n = 20

• ZF wrote the MCMC algorithm and R script and checked over the solutions document.

7

APPENDIX A: R Script for The Plot

1 SV.model <- function(r, h, n, a, sigma, alpha, beta, n.mcmc){
2 r <- r[2:n]
3 h <- h[1:(n - 1)]
4 library(rjags)
5 m.jags <-
6 "model{
7 for (i in 1:n){
8 r[i] ˜ dnorm(mu, exp(-(a1 + a2 * h[i] + xi * eta[i])))
9 eta[i] ˜ dnorm(0, 1)

10 }
11 a1 ˜ dnorm(a[1], 1/sigma[1])
12 mu ˜ dnorm(a[2], 1/sigma[2])
13 a2 ˜ dnorm(a[3], 1/sigma[3])
14 # write the inverse gamma distribution
15 xi <- sqrt(1 / inv.xi.square)
16 inv.xi.square ˜ dgamma(alpha, beta)
17 }"
18

19 mod <- textConnection(m.jags)
20 m.out <- jags.model(mod, data=list(’r’=r, ’h’=h, ’n’=(n - 1), ’a’=a, ’sigma’=

sigma, ’alpha’=alpha, ’beta’ = beta), n.chains=1)
21 n.burn <- round(.1 * n.mcmc)
22 update(m.out, n.burn)
23 m.samples <- jags.samples(m.out, c(’mu’, ’a1’, ’a2’, ’xi’), n.mcmc)
24 list(m.samples=m.samples)
25 }

APPENDIX B: R Script for The rjags Algorithm

1 realized_vol <- read.csv("˜/Desktop/UTexas/Spring 2023/SDS 384 Baysian/hw 6/
realized_vol.csv",header = FALSE)

2 returns <- read.csv("˜/Desktop/UTexas/Spring 2023/SDS 384 Baysian/hw 6/sp500.
csv",header = FALSE)

3 source("˜/Desktop/UTexas/Spring 2023/SDS 384 Baysian/hw 6/Stochastic_
Volatility.r")

4

5 a <- c(0, 0, 0)
6 sigma <- c(0.25, 0.25, 0.25)
7 alpha <- 100
8 beta <-1
9 n.mcmc <- 10000

10 n <- 20
11 m <- dim(returns)[1]
12 #create a vector to store the predictions
13 predictions <- rep(0, m - n)
14 returns.post <- rep(0, m - n)
15

8

16 for (i in 2:(m - n)){
17 r <- returns[i:(i + n),]
18 h <- 2 * log(realized_vol[i:(i + n),])
19 out <- SV.model(r, h, n, a, sigma, alpha, beta, n.mcmc)
20 coeff.samples <- out$m.samples
21 mu <- mean(coeff.samples$mu)
22 a1 <- mean(coeff.samples$a1)
23 a2 <- mean(coeff.samples$a2)
24 xi <- mean(coeff.samples$xi)
25 # make inference based on the mean of those samples
26 random <- rnorm(1, 0, 1)
27 random1 <- rnorm(1, 0, 1)
28 predict <- a1 + a2 * h[(n-1)] + xi * random
29 return <- mu + exp(predict/2)*random1
30 returns.post[i] = return
31 predictions[i] = predict
32 print(i)
33

34 }
35

36

37 #plot the posterior distribution to check for convergence
38 layout(matrix(1:2,2,1))
39 plot(coeff.samples$mu,type="l",lty=1,ylab=bquote(mu))
40 abline(h=mu,col=8)
41 plot(coeff.samples$a1,type="l",lty=1,ylab=bquote(a[1]))
42 abline(h=a1,col=8)
43 plot(coeff.samples$a2,type="l",lty=1,ylab=bquote(a[2]))
44 abline(h=a2,col=8)
45 plot(coeff.samples$xi,type="l",lty=1,ylab=bquote(Chi))
46 abline(h=xi,col=8)
47

48 library(vioplot)
49 layout(matrix(c(1,1,2,3),1,4))
50 data<-list(coeff.samples$a1,coeff.samples$a2)
51 vioplot(data,names=expression(a[1],a[2]))
52 abline(h=0,col=8)
53

54 vioplot(coeff.samples$mu,names=expression(mu))
55 vioplot(coeff.samples$xi,names=expression(xi))
56

57 predictions
58 predict_vol <- exp(predictions / 2)
59 predict_vol
60 realized_vol[20:m,]
61

62 #plot the prior and posterior distribution for prediction and return
63

64 layout(matrix(1:2,1,2))
65 density <- density(returns.post)
66 plot(density, main = "Density Plot of Returns", xlab = "Return", col = "green"

9

, lwd = 2,ylim = c(0, 250))
67 density1 <- density(returns$V1)
68 lines(density1, type = "l", lwd = 2, col = "blue")
69

70 density_vol <- density(predict_vol)
71 plot(density1, main = "Density Plot of Volatility", xlab =’Volatility’, col =

"green", lwd = 2,ylim = c(0, 500))
72 density_vol1 <- density(realized_vol$V1)
73 lines(density_vol1, type = "l", lwd = 2, col = "blue")

10

References

[1] Todd E Clark. “Real-time density forecasts from Bayesian vector autoregressions with
stochastic volatility”. In: Journal of Business & Economic Statistics 29.3 (2011), pp. 327–
341.

[2] Eric Jacquier, Nicholas G Polson, and Peter E Rossi. “Bayesian analysis of stochastic
volatility models”. In: Journal of Business & Economic Statistics 20.1 (2002), pp. 69–
87.

[3] Eric Jacquier, Nicholas G Polson, and Peter E Rossi. “Bayesian analysis of stochastic
volatility models with fat-tails and correlated errors”. In: Journal of Econometrics 122.1
(2004), pp. 185–212.

[4] Renate Meyer and Jun Yu. “BUGS for Bayesian analysis of stochastic volatility models”.
In: The Econometrics Journal 3.2 (2000), pp. 198–215.

[5] Harald Uhlig. “Bayesian vector autoregressions with stochastic volatility”. In: Econo-
metrica: Journal of the Econometric Society (1997), pp. 59–73.

11

